
December 1999
1

Notices

· Practical Mobile
 Robotics Class -
 11:00AM - 12:00PM

· Business Meeting -
 12:30 - 1:00

· General Meeting -
 1:00 - 3:00

Distribution

If you would like to
receive The Robot
Builder via e-mail,

contact the editor at:

apendragn@earthlink.net

Inside this Issue

Basic Ideas of Digital Signal
Processing …..……………..1

B.E.A.M. Robotics .………. 4

Basic C Programming …… 6

The Robot Builder
Volume Eleven Number Twelve December 1999

It’s no secret that computers are nearly
everywhere. Although it’s not always
obvious, they’re already embedded into
everything from microwave ovens to toys.
They’re inside your car, your radio, your
digital camera and your calculator. It seems
that nearly everything made today has a
processor in it. However, just as nearly
every personal device that needs control or
sequencing has been computerized over the
last few decades, it is likely that embedded
computers will be used to perform a new
kind of processing in the coming decades:
the processing of analog signals.

When computers first came out they were
applied wherever some kind of sequencing,
timing or control operation needed to be
performed. That’s why places like your
microwave’s timer seems like an obvious
place to stick a microprocessor. Turning
things on and off seems like an obvious
application of something that “thinks” in
terms of on and off (or binary) signals.

However, with the advent of cheap digital
signal processors (DSP’s), embedded
computers are taking on new kinds of roles
which depend on the processing of
continuous, time-varying signals themselves.
Before the advent of cheap digital signal
processors, these kinds of operations were
far too difficult for computers to perform.

Analog signals are different from the digital
signals that computers use. Digital signals
consist of sequences of 1’s and 0’s where

Basic Ideas of Digital Signal Processing
By Arthur Ed LeBouthillier

there are discrete differences between two
levels. Analog signals, however, may vary
continuously over a given range. Therefore,
whereas a digital signal may consist only of
two voltage levels of 0 and 5 volts, an
analog signal varies continuously between
those limits. Analog signals can take on
intermediate values such as 0.1 volts or 0.5
volts or 3 volts. Analog signals are more
representative of such things as sound,
which can vary smoothly between no sound
to very loud sound.

Signal Processing
Let’s concentrate on this idea of signal
processing first. Your radio is a signal
processor; it takes a signal which is
transmitted from a radio transmitter, filters
out unwanted signals, amplifies that signal,
filters out more unwanted signals and finally
amplifies the signal again so that it can drive
the speakers. Two of the most obvious kinds
of signal processing from this example are
amplification and filtering. Amplification

See DSP, Page 2

Analog
Signal In

Analog
Signal OutSignal Processing

(i.e. amplification or
filtering)

Figure 1 - Analog signal processing

increases the value of a signal and filtering
removes unwanted kinds of signals.
Mathematically, we can see a signal
processor as solely a mathematical function.
A signal of one sort goes through a function

December 1999
2

(a black box) to produce another, more desirable
type of signal.

Until recently, this kind of processing of converting
one kind of analog signal into another analog signal
has been performed directly with circuitry. An
engineer’s job was to design the circuitry that
performed this signal processing.

Digital Signal Processing
Digital Signal Processing (DSP) seeks to replace
formerly analog processing of signals via electronic
circuitry with software operations on computer-
based processors. DSP’s perform the process of
taking an analog signal, doing some kind of
processing on that signal (albeit with a computer)
and then outputting some kind of analog signal.

As the figure 2 shows, a DSP takes an analog
signal, converts it into a digital signal, operates on
that digital representation in the computer and then
outputs an analog signal through a digital to analog
converter. The analog to digital converter takes a
continuously varying signal and converts it to a
stream of digital numbers representing the amplitude
of the input signal at a given moment. The computer
takes this stream of numbers, performs some
mathematical functions on it and then outputs a
stream of digital numbers to an digital to analog
converter. The digital to analog converter takes the
stream of digital numbers and converts them to a
continuously varying analog signal. The overall
operation is: Analog in, Digital Processing, Analog
Out.

The reason that DSP’s are becoming popular for
performing the processing of analog signals is that

DSP from Page 1

the benefits of digital systems can be brought to the
processing of analog signals. These benefits include
easy re-programming, easy enhancements and
upgrades, and, in some cases, far superior
processing for lower costs.

Basic DSP operations
When we discussed a radio, we said that two of the
most important operations were amplifying and
filtering. As an example of why DSP’s have become
popular, we can understand the process of
amplification as merely multiplying the signal by a
factor. Therefore, if the value coming into the
analog to digital converter were 0.2 volts and we
wanted to amplify the value by 10, all we need do is
multiply the number 0.2 by 10 to obtain 2.0. The
processor would then output this value to the digital
to analog converter to produce a signal which is 2.0
volts.

The other primary operation performed by DSP’s is
filtering. Filtering is a process of removing some
unwanted frequency component from a signal. A
low pass filter passes low frequencies and excludes
high frequencies. A high pass filter passes high
frequencies and excludes low frequencies. A
bandpass filter excludes all high and low frequencies
which are not within a narrow band of frequencies.
All of these operations can be performed easily with
a DSP because they are actually only an averaging
process. Although a full understanding of how they
work requires extensive mathematics, the fact is that
they are only mathematical functions.

Because filters can be understood as mathematical
functions, they can be tailored very precisely. DSP’s
can create filters which are far superior to

See DSP, Page 3

Analog to
digital

converter

Digital to
analog

converter
Computer

Analog
signal

Analog
signal

Figure 2 - The structure of a digital signal processor

December 1999
3

DSP from Page 2

Electronic circuit-based filters because their
mathematical functions can be more precisely
specified. Unlike electronic circuit-based filters, they
are not affected by temperature and aging and as
computers get faster, a small DSP can perform the
function of dozens of filters.

In fact, it is possible to use DSP’s to create filters
that would be nearly impossible to create using
electronic circuitry. An engineer can specify nearly
any kind of filtering function and a single DSP can
perform what would take hundreds or even
thousands of transistors. Because these filters are
only programs running on a DSP, they can be
changed in a few microseconds and the whole
system can be reconfigured to perform some other
operation.

Where they’re used
Because of the ability to perform very complicated
processing of analog signals, DSP’s have been and
will be used in many different places. Filters have
already been mentioned, but DSP’s will be used in
the next few years in speech understanding systems,
voice compression, voice encryption, music
compression (MP3), noise elimination, and video
processing. They’re used in engine emission control
systems in your car and in your cellular phone.
They’ll be in high-density television (HDTV) sets.

One area that is receiving a lot of attention lately is
that of motor control. Controlling motors optimally
using DSP’s is envisioned. By using a DSP to
control a motor, it can be made to be extremely
efficient. This is because the DSP can tailor its
control over the motor to get the most optimum
operation depending on the speed of the motor.
This will minimize losses due to heating and will
also make motors last longer. Just motor control
alone is envisioned as a near-revolutionary area and
it is envisioned that DSP’s will be in virtually every
motor in the next few years.

Another area that will utilize DSP’s heavily will be
speech recognition products. The basic process of
speech recognition relies on being able to identify

time-varying frequency trends that form the basic
sounds of speech. In order to analyze speech with a
computer, the incoming sound must be analyzed in
terms of their basic frequencies and how those
frequencies are related. This is often done with a
process known as determining the spectrum. A
spectrum takes a signal and breaks it into the
frequency components that form it; it is as if there
were a number of filters, one for each frequency. By
analyzing trends and relations in the frequency
components from these filters, a computer can
characterize these basic sounds. By using pattern
matching techniques on these sound elements, the
word being spoken can be recognized. Being able to
do this requires being able to convert a sound into
its spectrum quickly. DSP’s have been optimized to
speed up the process of converting a sound into its
spectrum.

DSP Optimizations
What makes a DSP different from a regular
computer is the fact that its design has been
optimized to perform the operations needed in
signal processing equations. Multiplication is the
first example. DSP’s are designed with fast
multiplying circuitry allowing a DSP to perform up
to hundreds of times more multiplications in a
period of time. They are also optimized so that
repeated operations like multiplying a number by a
constant and adding the result to a running sum are
a single operations. These kinds of operations are
extremely common in signal processing math. Other
than these optimizations, though, DSP’s are merely
microcomputers which have been optimized to
speed up certain kinds of math.

Summary
DSP’s seek to replace the processing of analog
signals by software running on a computer. In order
to do this, they are optimized to do certain math
operations quickly. Because they are becoming
cheaper yet they offer superior capabilities in some
applications, they are becoming more commonplace
in places that were formerly processed with analog
circuitry.

December 1999
4

B.E.A.M. robotics has arisen as a new approach to
building robots. Its primary originator, Mark W.
Tilden, has developed a robot design philosophy
which is very different from traditional robot-
building techniques, emphasizing a minimalist,
evolutionary design approach.

Principles of B.E.A.M.
B.E.A.M. is an acronym for Biology, Electronics,
Aesthetics, and Mechanics. It stands apart from
most other robot building strategies because it
emphasizes a no-computer, minimalist approach
based on insect-like nervous systems. Rather than
concentrating on trying to make a computer do the
abstract thinking that living things like humans do, it
instead calls for mimicking the neuron-level circuitry
of the lowest levels of living neural systems. The
emphasis is on trying to build reflexive, stimulus-
response systems more like a vertebrate’s spinal
cord than its brain. As Brian Bush says in the
B.E.A.M. FAQ, “the basic principles of BEAM rest on
the fact to build smart machines one must first build a smart
body.”

Nervous Nets
The simplest processing elements in a B.E.A.M.
robot are the Nervous (Nv) and Neural (Nu)
neurons; an Nv is a motor driving element and an
Nu is a signal processing element. According to
Mark W. Tilden, founder of the B.E.A.M.
approach, Nu’s and Nv’s are “… real-time non-

linear analog control system emulating a low-level
peripheral spinal system. Based on arrays of
sequential RC (Resistor-Capacitor)-time-based
pulse delay circuits in closed loops, a Nv net is any
circuitry that can act as a media for sustaining
independent control ‘processes.’” The basic element
of an Nv or Nu is a schmitt-triggered inverter with
an RC timing circuit or similar circuit. Schmitt-
triggered means that the inverter has a strong
threshold before it fires; this helps to ensure a clean
oscillating behavior in a circuit. Figure 1 shows a
simple Nv or Nu circuit.

By combining these Nv’s into simple feedback
circuits, different kinds of sophisticated behaviors
arise. One reason for the sophistication is the
feedback caused on the circuit by motor loads.
Since drive motors have a different resistance when
a load is applied, they become both actuators and
sensors. This feedback can be anticipated by the
designer so that the feedback causes adaptive
behavior.

Multicores
Nv’s and Nu’s are combined into larger control
circuits called multicores. Depending on the number
of Nv’s and Nu’s in the system, they are known as
monocores, bicores, tricores, quadcores, quincores,
hexcores, septcores, octocores and so on. These
kinds of circuits become coordinating circuitry
between several motor elements and thus bring

B.E.A.M. Robotics
by Arthur Ed LeBouthillier

Figure 1 - A basic B.E.A.M. Nv neuron circuit

74HC14

See BEAM, Page 5

December 1999
5

about certain patterns of motor behavior. They can
be combined in leg-control or wheel-control systems
to produce capable moving mechanisms which react
to their environment. One of the simplest multicores
is the bicore. The bicore puts two Nv’s together to
form a closed-loop motor driving circuit. Motors
could be attached to the output of each Nv.

Multicores are similar to control elements biologists
have found in animal muscle control systems called
Central Pattern Generators (CPG). A CPG is a
neural circuit which produces coordinated muscle
patterns. Biologists have identified numerous kinds
of CPG’s in various creatures. Lobsters, for
example, have numerous CPG’s that control the
walking or resting posture. Like CPG’s, multicores
act as an adaptive sequencing control over the
robot’s legs or wheels.

Biomorphs
B.E.A.M. enthusiasts envision building robots
which are near-living machines which they call
biomorphs. As Mark Tilden and Brosl Hasslacher
say in Living Machines:

What is different about biomorphic machines
from typical mobile platform designs is not their
materials base but how they are organized. They
use a dynamical, non-symbolic internal world
representation and compliant, bi-directional,
interactive response where the external world
assumes a crucial role. In this they have much
in common with biological forms which is not
accidental; these machines are designed along
biological paradigms rather than on first
principle notions of how such machines should
be organized.

Tilden and his associates have produced dozens of
different biomorphs over the years. These range
from very simple 2 neuron creatures to complex
biomorphs with over a dozen neural elements.
These robots are not programmed in the way that
microprocessors are, but rather are designed using
the Nv and Nu circuitry to have propensities
towards certain kinds of behaviors. Often, the actual
behaviors which spontaneously arise are far different
from those anticipated by their designers.

Summary
B.E.A.M.is a robot design philosophy which
stresses building life-like mechanisms using neural-
like circuitry. Utilizing loops of pulse-forming
devices, complete adaptive control systems are
formed with very few components. This is similar to
mechanisms found in creatures such as insects and
lobsters. These machines evidence emergent
behaviors which are sometimes sophisticated and
often unpredictable. They can be fascinating to
watch and learn from.

References
The BEAM FAQ - Brian O. Bush
http://people.ne.mediaone.net/bushbo/beam/FAQ.html

Nervous Networks - Brian O. Bush
http://people.ne.mediaone.net/bushbo/beam/nvnet.html

Advanced Nervous Networks - Brian O. Bush
http://people.ne.mediaone.net/bushbo/beam/advnvnet.html

Living Machines - Brosl Hasslacher and Mark W.
Tilden

BEAM from Page 4

Figure 2 - The Bicore

December 1999
6

The C programming language is one of the most
important programming languages you can learn. It
is available for virtually every kind of computer
around and is one of the more powerful languages.
This series of articles will introduce some basic
ideas of C programming.

C is a typed language
From your grade-school math, you’ll remember
hearing the idea of different kinds of sets of
numbers. You probably barely remember hearing
about natural numbers, counting numbers, whole
numbers, real numbers and imaginary numbers. The
C language also uses this idea of different types of
numbers. Let’s look at the first kind: integers. If
you remember the idea of whole numbers, they were
numbers which didn’t have a fractional portion after
them. Therefore, 0, 1, 2, -1, and 100 are examples
of whole numbers, whereas 0.5, 1.25, 2.9, -1.6 and
100.75 are not examples of whole numbers. C has
its own terminology for these kinds of numbers;
they are known as integers. In C, an integer is a
whole number without a decimal point like -1, 0, 1,
5 and -3. C represents what is called a typed
language because you must always be aware of the
type of value you are operating on. Going further, C
makes a distinction between type int (short for
integer) and type float which are numbers which do
have fractional values (i.e. -6.2, 33.1, 600.5). You
must learn to distinguish these kinds of numbers in
order to use C properly. There are other types in C
such as long integers and many others and you can
even define your own types, but it is enough to
understand that C requires you to be conscious of
the type of number you are using.

C is a Functional Language
C has another idea that it borrows from math, that
of functions. Writing a C program consists of
defining functions which perform the operations you
wish to perform. You’re probably familiar with the
idea of a function from grade school math. You’ll
probably remember the general function formula: y
= f(x). In this formula, y represents a variable which

will be assigned some value, which is the product of
applying the function f to the variable x. We don’t
know the value of f(x), though, because it is not
defined. In math terms, we could define: f(x) =
5x+3. This definition of f(x) means that whenever
we evaluate a function such as y = f(5), we evaluate
the formula for f(x) by replacing the general
variable, x, with the value, 5 and then compute the
result.

When you write a program in C, you also define
functions, although C has its own peculiar way of
writing down functions. If we were to define the
function f in C, it would look like this:

float f(float x)
{

return 5 * x + 3;
}

Remembering the idea from the last section of
typing, we now see how C uses it. In this function
definition for f, we see the words float f(float x);
this is how we tell C that we are going to define a
function f which returns a type float and which
takes an argument, x, also of type float. Having
defined this function, we could then call it from
within a program by typing:

 y = f(5.0);

The result of this would be that the float number 5.0
would be assigned to the variable x in the function f,
the answer would be calculated and then the result
would be assigned to the variable y. One other thing
to notice about this line of code is the presence of
the semi-colon at the end of the line. Statements in
C are separated by a semicolon and most often
appear at the end of a line in order to tell the system
where the end of the statement is.

Conclusion
That’s all for now, we’ll look at some more ideas
about C programming next month.

Basic C Programming (Part 1)
By Arthur Ed LeBouthillier

December 1999
7

Robotics Society of Southern California

President Randy Eubanks

Vice President Henry Arnold

Secretary Arthur Ed LeBouthillier

Treasurer Henry Arnold

Past President Jess Jackson

Member-at-Large Tom Carrol

Member-at-Large Pete Cresswell

Member-at-Large Jerry Burton

Faire Coordinator Joe McCord

Newsletter Editor Arthur Ed LeBouthillier

The Robot Builder (TRB) is published monthly by the
Robotics Society of Southern California. Membership in the
Society is $20.00 per annum and includes a subscription to
this newsletter.

Membership applications should be directed to:

Robotics Society of Southern California
Post Office Box 26044
Santa Ana, CA 92799-6044

Manuscripts, drawings and other materials submitted for
publication that are to be returned must be accompanied by a
stamped, self-addressed envelope or container. However,
RSSC is not responsible for unsolicited material.

We accept a wide variety of electronic formats but if you are
not sure, submit material in ascii or on paper. Electronic
copy should be sent to:

apendragn@earthlink.net

Arthur Ed LeBouthillier - editor
The Robotics Society of Southern California was founded in 1989 as a non-profit experimental robotics group. The goal

was to establish a cooperative association among related industries, educational institutions, professionals and particularly robot
enthusiasts. Membership in the society is open to all with an interest in this exciting field.

The primary goal of the society is to promote public awareness of the field of experimental robotics and encourage the
development of personal and home based robots.

We meet the 2nd Saturday of each month at California State University at Fullerton in the electrical engineering building
room EE321, from 12:30 until 3:00.

The RSSC publishes this monthly newsletter, The Robot Builder, that discusses various Society activities, robot
construction projects, and other information of interest to its members.

Membership/Renewal Application

Name

Address

City

Home Phone () - Work Phone () -

Annual Membership Dues: ($20) Check #
(includes subscription to The Robot Builder)

Return to: RSSC
POB 26044
Santa Ana CA 92799-6044

How did you hear about RSSC? __

December 1999
8

Please check your address label to be sure your subscription will
not expire!

RSSC
POB 26044
Santa Ana CA 92799-6044

